A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure
نویسندگان
چکیده
Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modulation targets higher levels of the visual system (such as V4 or MT) rather than input areas (such as V1). Here we propose a simple mechanism that explains how a top-down attentional modulation, falling on higher visual areas, can produce the observed effects of attention on neural responses. Our model requires only the existence of modulatory feedback connections between areas, and short-range lateral inhibition within each area. Feedback connections redistribute the top-down modulation to lower areas, which in turn alters the inputs of other higher-area cells, including those that did not receive the initial modulation. This produces firing rate modulations and receptive field shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce competitive effects that are automatically scaled to receptive field size in any given area. Our model reproduces the observed attentional effects on response rates (response gain, input gain, biased competition automatically scaled to receptive field size) and receptive field structure (shifts and resizing of receptive fields both spatially and in complex feature space), without modifying model parameters. Our model also makes the novel prediction that attentional effects on response curves should shift from response gain to contrast gain as the spatial focus of attention drifts away from the studied cell.
منابع مشابه
The micro-structure of attention
We investigate three possible methods of specifying the microstructure of attention feedback: contrast gain, additive and output gain, using simple single node and 3-layer cortical models composed of graded or spiking neurons. Contrast gain and additive attention are also tested in a spiking network which is simplified by mean field methods. The simulation task uses two stimuli, probe and refer...
متن کاملReceptive Field Encoding Model for Dynamic Natural Vision
Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...
متن کاملV4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field
Visual attention is generally considered to facilitate the processing of the attended stimulus. Its mechanisms, however, are still under debate. We have developed a systems-level model of visual attention which predicts that attentive effects emerge by the interactions between different brain areas. Recent physiological studies have provided evidence that attention also alters the receptive fie...
متن کاملTuned Normalization Explains the Size of Attention Modulations
The effect of attention on firing rates varies considerably within a single cortical area. The firing rate of some neurons is greatly modulated by attention while others are hardly affected. The reason for this variability across neurons is unknown. We found that the variability in attention modulation across neurons in area MT of macaques can be well explained by variability in the strength of...
متن کاملAttention as Reward-Driven Optimization of Sensory Processing
Attention causes diverse changes to visual neuron responses, including alterations in receptive field structure, and firing rates. A common theoretical approach to investigate why sensory neurons behave as they do is based on the efficient coding hypothesis: that sensory processing is optimized toward the statistics of the received input. We extend this approach to account for the influence of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2016